Phosphoenolpyruvate carboxykinase in plants exhibiting crassulacean Acid metabolism.
نویسندگان
چکیده
Phosphoenolpyruvate carboxykinase has been found in significant activities in a number of plants exhibiting Crassulacean acid metabolism. Thirty-five species were surveyed for phosphoenolpyruvate carboxykinase, phosphoenolpyruvate carboxylase, ribulose diphosphate carboxylase, malic enzyme, and malate dehydrogenase (NAD). Plants which showed high activities of malic enzyme contained no detectable phosphoenolpyruvate carboxykinase, while plants with high activities of the latter enzyme contained little malic enzyme. It is proposed that phosphoenolpyruvate carboxykinase acts as a decarboxylase during the light period, furnishing CO(2) for the pentose cycle and phosphoenolpyruvate for gluconeogenesis.Some properties of phosphoenolpyruvate carboxykinase in crude extracts of pineapple leaves were investigated. The enzyme required Mn(2+), Mg(2+), and ATP for maximum activity. About 60% of the activity could be pelleted, along with chloroplasts and mitochondria, in extracts from leaves kept in the dark overnight.
منابع مشابه
Phosphorylation of phosphoenolpyruvate carboxykinase in plants. Studies in plants with C4 photosynthesis and Crassulacean acid metabolism and in germinating seeds.
We have previously shown that phosphoenolpyruvate carboxykinase (PEPCK) is phosphorylated in vivo in the cotyledons of darkened cucumber seedlings and that phosphorylation is reversed by light [Walker and Leegood (1995) FEBS Lett. 362, 70-74]. In this study the molecular mass of PEPCK was estimated in a range of gluconeogenic seedlings and in leaves of C4 plants and plants with Crassulacean aci...
متن کاملHow to tell the time: the regulation of phosphoenolpyruvate carboxylase in Crassulacean acid metabolism (CAM) plants.
Crassulacean acid metabolism (CAM) plants exhibit persistent circadian rhythms of CO(2) metabolism. These rhythms are driven by changes in the flux through phosphoenolpyruvate carboxylase, which is regulated by reversible phosphorylation in response to a circadian oscillator. This article reviews progress in our understanding of the circadian expression of phosphoenolpyruvate carboxylase kinase.
متن کاملRegulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin : Modulation of Leaf Gene Expression by Roots?
Phosphoenolpyruvate carboxylase (PEPCase), the key enzyme of Crassulacean acid metabolism, is induced by water stress in leaves of Mesembryanthemum crystallinum. In water-stressed plants or excised leaves, exogenous cytokinin suppresses PEPCase transcript accumulation in the leaves. Cytokinin (6-benzylaminopurine) used in concentrations from 5 to 500 micromolar (a) inhibits the upregulation of ...
متن کاملCarbon metabolism in two species of pereskia (cactaceae).
The Pereskia are morphologically primitive, leafed members of the Cactaceae. Gas exchange characteristics using a dual isotope porometer to monitor (14)CO(2) and tritiated water uptake, diurnal malic acid fluctuations, phosphoenolpyruvate carboxylase, and malate dehydrogenase activities were examined in two species of the genus Pereskia, Pereskia grandifolia and Pereskia aculeata. Investigation...
متن کاملThe role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics.
Udotea flabellum is a marine, macroscopic green alga with C4-like photosynthetic characteristics, including little O2 inhibition of photosynthesis, a low CO2 compensation point, and minimal photorespiration; but it lacks anatomical features analogous to the Kranz compartmentation of C4 plants, and phosphoenolpyruvate carboxylase [PEPC; orthophosphate:oxaloacetate carboxy-lyase (phosphorylating)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 52 4 شماره
صفحات -
تاریخ انتشار 1973